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Large-eddy simulation of free-surface turbulence
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In this paper we investigate the large-eddy simulation (LES) of the interaction between
a turbulent shear flow and a free surface at low Froude numbers. The benchmark
flow field is first solved by using direct numerical simulations (DNS) of the Navier–
Stokes equations at fine (1282 × 192 grid) resolution, while the LES is performed
at coarse resolution. Analysis of the ensemble of 25 DNS datasets shows that the
amount of energy transferred from the grid scales to the subgrid scales (SGS) reduces
significantly as the free surface is approached. This is a result of energy backscatter
associated with the fluid vertical motions. Conditional averaging reveals that the
energy backscatter occurs at the splat regions of coherent hairpin vortex structures
as they connect to the free surface. The free-surface region is highly anisotropic
at all length scales while the energy backscatter is carried out by the horizontal
components of the SGS stress only. The physical insights obtained here are essential
to the efficacious SGS modelling of LES for free-surface turbulence. In the LES,
the SGS contribution to the Dirichlet pressure free-surface boundary condition is
modelled with a dynamic form of the Yoshizawa (1986) expression, while the SGS
flux that appears in the kinematic boundary condition is modelled by a dynamic
scale-similarity model. For the SGS stress, we first examine the existing dynamic
Smagorinsky model (DSM), which is found to capture the free-surface turbulence
structure only roughly. Based on the special physics of free-surface turbulence, we
propose two new SGS models: a dynamic free-surface function model (DFFM) and
a dynamic anisotropic selective model (DASM). The DFFM correctly represents the
reduction of the Smagorinsky coefficient near the surface and is found to capture the
surface layer more accurately. The DASM takes into account both the anisotropy
nature of free-surface turbulence and the dependence of energy backscatter on specific
coherent vorticity mechanisms, and is found to produce substantially better surface
signature statistics. Finally, we show that the combination of the new DFFM and
DASM with a dynamic scale-similarity model further improves the results.

1. Introduction
The interaction of turbulence with a free surface is a problem of fundamental

interest and important to many applications. For instance, free-surface turbulent flows
affect the rate at which heat and mass are transferred across the ocean surface, which
has immediate as well as long-term environmental effects. Recent radar observations
of ship wakes have also added new interest in the interaction of wake turbulence with
surface waves. Free-surface turbulence is also of interest in a variety of industrial
applications.

Free-surface turbulence has been studied by a number of investigators using direct
numerical simulations (DNS) of the governing equations: to name a few, Lam
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& Banerjee (1988), Handler et al. (1993), Komori et al. (1993), Borue, Orszag &
Staroselsky (1995) and Pan & Banerjee (1995) for open-channel flows; Perot & Moin
(1995) and Walker, Leighton & Garza-Rios (1996) for initially isotropic free-surface
flows; Lombardi, De Angelis & Banerjee (1996) and Cortesi et al. (1999) for air–water
mixing flows; and Shen et al. (1999) and Shen, Triantafyllou & Yue (2000) for the
interaction between a turbulent shear flow and a free surface. Such DNS results
provide detailed information on the statistical, structural and dynamical properties of
free-surface turbulence and have led to appreciable steps towards its understanding.

While DNS resolves the essential turbulence scales and thus has the virtue that
no ad hoc model is needed, it is limited to low Reynolds numbers and simple
flow configurations. For most problems of importance to applications, the Reynolds
numbers are high, DNS is incapable of covering the full (integral to dissipative) scale
range, and turbulence modelling is essential. A promising approach in this case is
the method of large-eddy simulation (LES), in which only the large (grid-scale, GS)
motions are resolved explicitly, while contributions from subgrid-scale (SGS) motions
are modelled. Since the introduction of LES in meteorology (Smagorinsky 1963), LES
has been applied with some success to a variety of turbulence problems. Reviews on
the development and application of LES can be found in Rogallo & Moin (1984),
Lesieur & Métais (1996) and Meneveau & Katz (2000).

The development of LES for free-surface turbulence has been limited until recently.
Dommermuth & Novikov (1993) used DNS and LES to study the interaction between
turbulence and a free surface with and without surface waves. They employed a
number of local and global SGS models and their combinations, but with limited
success in that, as resolution is decreased, the closure models they considered work
as poorly as grid filters with no SGS models. They concluded that it would be
important to obtain a better understanding of the structure of the turbulence in
question. Salvetti & Banerjee (1995) and Salvetti et al. (1997) developed a dynamic
two-parameter model, which is a combination of the Smagorinsky model and the
scale-similarity model (Bardina, Ferziger & Reynolds 1983) with both coefficients
determined dynamically through the Germano identity (Germano et al. 1991). Their
tests with decaying turbulence beneath a flat free-slip wall show that the dynamic
two-parameter model obtains significant improvements over existing SGS models.
Recently, Hodges & Street (1999) performed LES for a turbulent open-channel flow
with a finite-amplitude surface wave. They employed the dynamic two-parameter
model as the SGS model and obtained results for the turbulence–wave interactions.

Very recently, Dimas & Fialkowski (2000) proposed a novel large-wave simulation
approach for the formulation of LES of free-surface flows at high Froude numbers.
In this approach, the irregular mesh associated with the free-surface wave motion is
transformed to a rectangular computational domain. By filtering the Navier–Stokes
equations in the computational space, a new SGS term representing the small-scale
surface-wave effects emerges, in addition to the usual SGS stress. As a first step
in testing this new approach, Dimas & Fialkowski (2000) employed eddy-viscosity
models with constant model coefficients for two-dimensional weak spilling breakers
and obtained promising results.

The objective of the present study is to further develop large-eddy simulation
capabilities for free-surface turbulent flows. As a canonical problem, we consider the
interaction of a turbulent shear flow with a free surface at low Froude numbers.
From previous DNS studies (cf. Shen et al. 1999, 2000), it is known that free-surface
turbulent shear flow possesses a number of unique features: (i) The flow field near the
surface is highly anisotropic. The vanishing of the tangential stresses at the surface
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creates a thin surface layer where the velocity derivatives (e.g. vorticity and strain
rate components) are highly anisotropic. On the other hand, the blockage effects
of the surface cause anisotropy of the velocity components themselves over a much
thicker region. (ii) This multi-layer structure is manifested in the turbulent diffusion,
which can be interpreted analytically through a similarity solution for the mean flow
(Shen et al. 2000). (iii) The free-surface turbulent flow is characterized by connection
of coherent hairpin vortex structures at the free surface. Depending on the stage of
the connection process, different vortex dynamics can be identified, which ultimately
result in persistent surface-connecting vortices.

From the above, it is clear that the effectiveness of LES of free-surface turbulence
would be enhanced if the characteristic features of the flow are taken into account
and are captured by the SGS model(s) employed. In addition to the descriptions
of the statistical and structural properties, of special importance in the context of
LES is an understanding of the interaction and energy transfer mechanisms between
resolved grid scales and the modelled subgrid scales of the flow. In this paper we
investigate these inter-scale turbulent mechanisms near the free surface and use
this understanding to develop specific SGS models which capture these underlying
structures and mechanisms. The efficacy of these models is supported by extensive a
priori and a posteriori LES tests.

This paper is organized as follows. We outline in § 2 the mathematical formulation
and numerical method for the DNS and LES. In § 3, we analyse the DNS data to
obtain the physical understanding necessary for the effective SGS modelling of free-
surface turbulence. We investigate the energy cascade in the free-surface turbulence
and use a conditional averaging technique to study the role of coherent vortex
structures in the inter-scale energy transfer. We also examine the anisotropy of the
flow field and the consequent implications for SGS modelling. The LES results are
presented in § 4. We first investigate the modelling of the subgrid-scale contributions
appearing in the boundary conditions. We then propose two new models for the SGS
stress, a dynamic free-surface function model (DFFM) and a dynamic anisotropic
selective model (DASM). These new models are evaluated in detail and are shown
to be superior to existing models. Finally, we combine the new DFFM and DASM
with a dynamic scale-similarity model to further improve the performance. In § 5 we
present our conclusions.

2. Mathematical formulation and numerical method
2.1. Governing equations

We consider a turbulent shear flow beneath a free surface. As shown in figure 1, the
coordinate axes x, y, z (also denoted as xi, i = 1, 2, 3) respectively point in the mean
flow streamwise, mean flow spanwise, and vertical upward directions. The origin is
located at the undisturbed free surface.

The governing equations for the velocity components ui (also denoted as u, v, or
w) are the Navier–Stokes equations and the continuity equation:

∂ui

∂t
+
∂(uiuj)

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
, i = 1, 2, 3, (2.1)

∂ui

∂xi
= 0. (2.2)

Here and hereafter, all variables are normalized by the vertical extent L0 and velocity
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Figure 1. Schematic of a turbulent shear flow under a free surface.

deficit U0 of the initial mean shear. The dynamic pressure p is normalized by ρU2
0 ,

where ρ is the fluid density. The Reynolds number is defined as Re ≡ U0L0/ν, with ν
the kinematic viscosity.

In this study, for any variable f(x), its grid-scale portion f(x) is obtained by using
a low-pass filter G(x) (cf. e.g. Leonard 1974):

f̄(x) ≡
∫
G(x− x′)f(x′) dx′; (2.3)

and the subgrid-scale portion f′(x) is defined as

f′(x) ≡ f(x)− f̄(x). (2.4)

After applying the filter to (2.1) and (2.2), we obtain the governing equations for
the grid-scale velocities:

∂ūi

∂t
+
∂ūiūj

∂xj
= − ∂p̄

∂xi
+

1

Re

∂2ūi

∂xj∂xj
− ∂τij

∂xj
, i = 1, 2, 3, (2.5)

and
∂ūi

∂xi
= 0. (2.6)

Here τij is the subgrid-scale (SGS) stress defined as

τij ≡ uiuj − ūiūj , i, j = 1, 2, 3, (2.7)

which represents the contributions from the subgrid scales and must be modelled in
terms of resolved quantities. In flows where only kinematic boundary conditions are
imposed, it is conventional to model only the trace-free portion, Mij , of τij:

Mij ≡ τij − 1
3
δijτkk. (2.8)

The isotropic part of the SGS stress is then absorbed into the (dynamic) pressure.
Thus the momentum equation (2.5) becomes

∂ūi

∂t
+
∂ūiūj

∂xj
= −∂P̄

∂xi
+

1

Re

∂2ūi

∂xj∂xj
− ∂Mij

∂xj
, i = 1, 2, 3, (2.9)
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with the modified pressure

P̄ ≡ p̄+ 1
3
τkk. (2.10)

In the presence of a free surface, dynamic conditions on the total stress are
imposed and the decomposition (2.8) and (2.10) results in an additional SGS scalar,
pSGS ≡ τkk/3, which must be modelled separately. This is discussed in § 2.2 and the
performance of this modelling is evaluated in § 4.2.

2.2. Boundary conditions

We treat the bottom z = −D as a flat free-slip boundary, which has the boundary
conditions

∂u

∂z
=
∂v

∂z
= w =

∂p

∂z
= 0 on z = −D. (2.11)

After passing the filter (2.3), the bottom boundary conditions for the grid-scale
motions have a similar form:

∂ū

∂z
=
∂v̄

∂z
= w̄ =

∂P̄

∂z
= 0 on z = −D. (2.12)

The boundary conditions for the deformable free surface are much more com-
plicated. Assuming that the Froude number Fr ≡ U0/(gL0)

1/2 (g is the gravity
acceleration) is small, we linearize the free-surface boundary conditions at z = 0.
Neglecting surface tension effects and assuming constant pressure on the air side, the
balance of the two tangential and one normal stress components at the free surface
yields respectively the three dynamic boundary conditions

1

Re

(
∂u

∂z
+
∂w

∂x

)
= 0 on z = 0, (2.13)

1

Re

(
∂v

∂z
+
∂w

∂y

)
= 0 on z = 0, (2.14)

and

p =
h

Fr2
+

2

Re

∂w

∂z
on z = 0, (2.15)

where h(x, y, t) is the free-surface elevation.
Upon filtering, the dynamic free-surface boundary conditions for the grid-scale

motions are obtained as follows:

1

Re

(
∂ū

∂z
+
∂w̄

∂x

)
= 0 on z = 0, (2.16)

1

Re

(
∂v̄

∂z
+
∂w̄

∂y

)
= 0 on z = 0, (2.17)

and

p̄ =
h̄

Fr2
+

2

Re

∂w̄

∂z
on z = 0. (2.18)

Because of the modification (2.10), the normal dynamic free-surface boundary condi-
tion becomes

P̄ =
h̄

Fr2
+

2

Re

∂w̄

∂z
+ pSGS on z = 0, (2.19)

where the subgrid-scale contribution pSGS ≡ τkk/3 is unknown and needs to be
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separately modelled. In this study, we model pSGS by Yoshizawa (1986)’s expression:

1
3
τkk = 2Cp∆̄

2|s̄|2. (2.20)

Here |s̄| ≡ (2s̄ij s̄ij)
1/2 and s̄ij ≡ (∂ūi/∂xj + ∂ūj/∂xi)/2. In a dynamic scheme, the coef-

ficient Cp can be determined through the procedure developed by Moin et al. (1991)
based on the Germano identity (Germano et al. 1991). To do this, we introduce a

test filter Ĝ in addition to the grid filter G and, let Ĝ = ĜG. Applying Ĝ to the
Navier–Stokes equations, we obtain the subgrid-scale stress at the coarse filter level:

Tij = ûiuj − ˆ̄ui ˆ̄uj, i, j = 1, 2, 3. (2.21)

The Germano identity gives the algebraic relation

Lij = ̂̄uiūj − ˆ̄ui ˆ̄uj = Tij − τ̂ij , (2.22)

where Lij is a function of ūi and is computable from the resolved variables.
Assuming that the same Yoshizawa expression can be applied to Tkk/3 with the

same coefficient Cp:

1
3
Tkk = 2Cp

ˆ̄∆2| ˆ̄s|2, (2.23)

we obtain
1
3
Lkk = 2Cp

ˆ̄∆2| ˆ̄s|2 − 2Cp
ˆ̄∆2|s̄|2. (2.24)

Simplification can be obtained if the coefficient Cp in (2.24) can be extracted from the
filter operation in the last term. In general, this cannot be done directly (cf. Ghosal
et al. 1995). For simplicity, we assume that Cp is constant on the horizontal plane

and let the test filter Ĝ operate in the horizontal directions only. Equation (2.24) then
becomes

1
3
Lkk = Cp(2

ˆ̄∆2| ˆ̄s|2 − 2∆̄2 |̂s̄|2). (2.25)

The coefficient Cp can be obtained by least-squares to best match the two sides of
(2.25) on the free surface:

Cp =
〈mILkk/3〉
〈m2

I〉 on z = 0, (2.26)

where mI = 2 ˆ̄∆2| ˆ̄s|2 − 2∆̄2 |̂s̄|2 and 〈 〉 denotes the horizontal plane averaging.
The kinematic free-surface boundary condition, which states that the free surface

is material, gives

∂h

∂t
= w − u∂h

∂x
− v ∂h

∂y
on z = h. (2.27)

Upon Taylor expansion about z = 0 and using (2.2), we obtain

∂h

∂t
= w − ∂

∂x
(uh)− ∂

∂y
(vh) on z = 0. (2.28)

After filtering, the kinematic free-surface boundary condition becomes

∂h̄

∂t
= w̄ − ∂

∂x
(ūh̄)− ∂

∂y
(v̄h̄)− ∂τkbcu

∂x
− ∂τkbcv

∂y
on z = 0. (2.29)

Here

τkbcu ≡ uh− ūh̄ and τkbcv ≡ vh− v̄h̄, (2.30)
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which are additional unknown subgrid-scale quantities and must again be separately
modelled. In this study we use scale-similarity models:

τkbcu ≡ uh− ūh̄ = Ckbc(ūh̄− ¯̄u¯̄h), τkbcv ≡ vh− v̄h̄ = Ckbc(v̄h̄− ¯̄v ¯̄h). (2.31)

The coefficient, Ckbc, can again be determined dynamically as follows.

At the coarse filter level Ĝ, the SGS flux is written as

Tkbc
u ≡ ûh− ˆ̄u ˆ̄h = Ckbc(

̂̄
uh̄− ˆ̄̄u

ˆ̄̄
h), T kbc

v ≡ v̂h− ˆ̄v ˆ̄h = Ckbc(
̂̄
vh̄− ˆ̄̄v

ˆ̄̄
h). (2.32)

An algebraic identity similar to (2.22) gives

Lkbc
u = ̂̄uh̄− ˆ̄u ˆ̄h = Tkbc

u − τ̂kbcu = Ckbc(
̂̄̄
u¯̄h− ˆ̄̄u

ˆ̄̄
h),

Lkbc
v = ̂̄vh̄− ˆ̄v ˆ̄h = Tkbc

v − τ̂kbcv = Ckbc(
̂̄̄
v ¯̄h− ˆ̄̄v

ˆ̄̄
h).

 (2.33)

Here Ckbc is assumed to be constant on the free surface and is solved by least-square
matching of (2.33) to give

Ckbc =
〈Lkbc

u mu +Lkbc
v mv〉

〈m2
u + m2

v〉 on z = 0, (2.34)

where mu =
̂̄̄
u¯̄h− ˆ̄̄u

ˆ̄̄
h and mv =

̂̄̄
v ¯̄h− ˆ̄̄v

ˆ̄̄
h.

The performance of the SGS modelling for the free-surface dynamic and kinematic
boundary conditions discussed here will be evaluated in § 4.2.

2.3. Numerical method

The numerical method for the DNS is given in detail in Shen et al. (1999). To
summarize, the Navier–Stokes equations (2.1) together with the continuity equation
(2.2) are solved as an initial-boundary-value problem. For the numerics, we use a
periodic boundary condition in the horizontal directions and a vertically staggered
grid system where u, v, p are assigned at regular grids while w is assigned at staggered
grids. For space discretization, a sixth-order finite difference scheme is used in the
horizontal directions and a second-order finite difference scheme is used in the
vertical direction. A second-order Runge–Kutta scheme is used for time integration.
The pressure at each Runge–Kutta time-substep is solved through a Poisson equation
which is obtained by taking the divergence of the momentum equation and invoking
the continuity equation.

The numerical scheme for the LES is essentially the same as that for DNS. The
additional SGS stress terms are assigned at the vertically staggered grid system, with
τ11, τ12 (τ21), τ22 and τ33 at regular grids, and τ13 (τ31), τ23 (τ32) at staggered grids.
To calculate the derivatives of the SGS stress, we use a sixth-order finite difference
scheme in the horizontal directions and a second-order finite difference scheme in the
vertical direction.

For both DNS and LES simulations, the computational domain size is Lx × Ly =
10.4722 (horizontally) by Lz = 6 (vertically). The Reynolds number is Re = 1400 and
the Froude number is Fr = 0.7. For DNS, we use a 1282 (horizontal)× 192 (vertical)
grid (∆x = ∆y ' 0.08, ∆z ' 0.03) with timestep 0.005. The DNS grid discretizations
are comparable to the Kolmogorov length scale, which for this Reynolds number
and the turbulence energy dissipation rate from the simulations, is estimated to be
η ∼ 0.03. For LES we use a coarse 322(horizontal)× 96 (vertical) grid with timestep
0.02.
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Figure 2. Time evolution of (a) the mean streamwise velocity 〈u〉, and (b) turbulent kinetic energy
q2/2 ≡ 〈(ui − 〈ui〉)2〉/2, i = 1, 2, 3, as a function of depth: ———, t = 20; – – – –, t = 40; – · – · –,
t = 60; · · · · · ·, t = 80.

3. DNS results for SGS modelling
3.1. Overview of the flow field

The direct numerical simulation starts with the initial mean velocity profile

u(z, t = 0) = 1− 0.9988 sech2(0.88137 z). (3.1)

This profile corresponds to the mean velocity measured in the wake of a NACA 0003
hydrofoil (Mattingly & Criminale 1972). Small-amplitude divergence-free velocity
noise is imposed upon this initial field, serving as the seed for turbulence. From this
initial condition, DNS is performed to t = 90. To obtain converged statistics, we
perform 25 repeated simulations with different initial seeds. All the statistical results
we report in this paper are ensemble averaged over these simulations. In view of the
horizontal homogeneity, spatial average over the horizontal (x, y)-plane is used unless
otherwise pointed out.

Figure 2 shows the time evolutions of the mean streamwise velocity and the
turbulence intensity depth profile. As expected, energy is extracted from the mean
shear for turbulence production. Our interests are in the processes near the free
surface. Figure 3 plots the evolutions of turbulent kinetic energy at the free surface
and the fluctuation of surface elevation. For time between 40 ∼ 75, turbulence supply
from the mean shear below is approximately balanced by dissipation (see § 3.2). It is
this fully developed and quasi-steady stage that the present study is focused on.

To quantify the interactions between grid-scale and subgrid-scale motions, we define
grid-scale motion as that obtained after applying a low-pass filter to the DNS data.
In this study, the grid filter G(x) in (2.3) is defined as Gaussian filters (cf. Kwak,
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Figure 3. Time evolution of the free-surface turbulent kinetic energy q2|z=0/2 and the fluctuation
of free-surface elevation hrms/Fr2.

Reynolds & Ferziger 1975) in the horizontal directions and a discrete filter in the
vertical direction:

G(x) = G1(x)G2(y)G3(z),

G1(x) = (6/π)1/2 exp[−6x2/∆̄2
x],

G2(y) = (6/π)1/2 exp[−6y2/∆̄2
y],

G3(z) = [δD(z − ∆̄z) + 2δD(z) + δD(z + ∆̄z)]/4.

 (3.2)

Here δD is the Dirac delta function; and ∆̄x/∆x = ∆̄y/∆y = 8 and ∆̄z/∆z = 2 are the
horizontal and vertical filter widths, respectively.

Figure 4 plots the horizontal energy spectrum Euiui(kn), which is defined as

Euiui(kn; z) ≡
∑

kn−∆k/26k<kn+∆k/2

1
2
ũi(kx, ky; z)ũ

∗
i (kx, ky; z)/∆k, i = 1, 2, 3. (3.3)

Here kn = n∆k , n = 1, 2, 3 . . . with ∆k = 2π/Lx = 2π/Ly . In (3.3), ũi is the (horizontal)
Fourier mode (ũ∗i is the complex conjugate) of the velocity component ui:

ui(x, y, z, t) =
∑
kx,ky

ũi(kx, ky, z, t)e
ikxxeikyy, (3.4)

where

kx = nx∆k, ky = ny∆k, and k ≡
√
k2
x + k2

y, (3.5)

nx = −Nx/2, . . . , Nx/2− 1, ny = −Ny/2, . . . , Ny/2− 1, (3.6)

with Nx(Ny) the grid numbers in the x- (y-) direction.
Because of the low Reynolds number limited by the DNS, only a relatively small

portion of the energy spectrum Euiui in figure 4 is close to the k−5/3 high-wavenumber
asymptote. Figure 4, however, shows clearly the overlap among the grid-scale portion

of the kinetic energy, Eūiūi ≡
∑˜̄ui˜̄u∗i /(2∆k), the subgrid-scale portion of the energy,

Eu′iu′i ≡
∑
ũ′iũ′i

∗
/(2∆k), and the remaining cross-portion, Eūiu′i ≡

∑
(˜̄uiũ′i∗ + ũ′i˜̄u∗i )/(2∆k).
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Figure 4. Kinetic energy spectra in the bulk flow (z = −1.5) for: the total velocity Euiui (———);
the grid-scale portion Eūiūi (– – – –); the subgrid-scale portion Eu′iu′i (– · – · –); and the cross-portion

Eūiu′i (· · · · · ·). t = 60.

Such overlaps are a characteristic of the (horizontal) Gaussian filters (3.2). The use
of the Gaussian filter and the resulting energy overlap are the basis of the scale-
similarity SGS models. The importance of including such SGS models in the LES is
demonstrated in simulations in § 4.6.

Similar to the energy spectrum, the turbulence kinetic energy q2/2 itself can be
separated into its scale components:

1
2
q2 ≡ 1

2
〈(ui − 〈ui〉)2〉 = 1

2
〈(ūi − 〈ūi〉)2〉︸ ︷︷ ︸

grid-scale component

+ 〈(ūi − 〈ūi〉)(u′i − 〈u′i〉)〉︸ ︷︷ ︸
cross-contribution

+ 1
2
〈u′2i 〉︸ ︷︷ ︸

subgrid-scale component

.

(3.7)
Likewise, the Reynolds stress 〈−uw〉 can be separated as

〈−uw〉 = 〈−ū w̄〉︸ ︷︷ ︸
grid-scale component

+ 〈−ūw′ − u′w̄〉︸ ︷︷ ︸
cross-contribution

+ 〈−u′w′〉︸ ︷︷ ︸
subgrid-scale component

. (3.8)

Figure 5 plots the vertical profiles of these components for the turbulence energy and
the Reynolds stress 〈−uw〉. It is clear that the grid-scale portion, which contains most
of the energy, is responsible for the main part of the turbulence transport.

3.2. Inter-scale energy transfer

Turbulence is characterized by the energy cascade throughout different length scales.
The most important role of the SGS model is to account for the energy transfer
between the resolved and subgrid scales. Figure 6(a) plots the horizontal plane-
averaged energy transfer 〈ε〉 from the grid scales to the subgrid scales, where ε ≡ τij s̄ij
and s̄ij ≡ (∂ūi/∂xj + ∂ūj/∂xi)/2. Positive/negative sign of ε corresponds to energy
transfer to/from the grid scales from/to the subgrid scales. From the figure, it is
seen that the average energy transfer is from grid to subgrid scales at all depths. The
amount of energy transferred into the subgrid scales is however much reduced near
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t = 60.

the free surface. For example, in the Smagorinsky model of the SGS stress,

τij − 1
3
δijτkk = −2CS∆̄

2|s̄|2s̄ij , (3.9)

the coefficient CS will, as a result, decrease towards the free surface. This behaviour of
CS is confirmed and shown in figure 6(a). In figure 6(a), CS is obtained by assuming it
to be constant in the horizontal plane and then calculated by best matching the two
sides of (3.9) (cf. a priori tests by Clark, Ferziger & Reynolds 1979, and McMillan,
Ferziger & Rogallo 1980). The overall filter width ∆̄ is set to be

∆̄ ≡ (∆̄x∆̄y∆̄z)
1/3 = 0.2992. (3.10)

Figure 6(b) plots the grid percentages at each horizontal plane where forward
transfer (negative ε) or backward transfer (positive ε) occurs. In the bulk flow below,
about 70% of the grids transfer energy forward while the remaining 30% experi-
ence energy backscatter. The relatively high percentage of backscatter is consistent
with previous studies. Piomelli et al. (1991) found that for turbulent channel flow,
backscatter occurs at nearly 50% of the points in the flow when a Fourier cutoff
filter is used; if a Gaussian filter is used, the backscatter fraction is reduced to 30%.
Of significant importance to the study of free-surface turbulence is the near-surface
behaviour in figure 6(b) showing that the percentage of backscatter area increases
from 30% to more than 40% as the free surface is approached.

The above results suggest that the inter-scale energy transfer near the free surface
is significantly different from that in the bulk flow below and that energy backscatter
must play a more important role near the surface. To further investigate these
mechanisms, we study the energy cascade in the spectral space.
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We denote the nonlinear advective terms as

Ni ≡ −∂uiuj
∂xj

, i = 1, 2, 3, (3.11)

and the corresponding Fourier modes Ñi. From (2.1) and (3.3), the effect of the
nonlinear terms on ∂E(kn)/∂t can be written as

T(kn) =
∑

kn−∆k/26
√
k2
x+k2

y<kn+∆k/2

Re{ũ∗i (kx, ky)Ñi(kx, ky)}/∆k, (3.12)

where Re denotes the real part.
The wave vector of the quadratic nonlinear terms, (kx, ky), and those of the two

velocity components in the nonlinear terms, (krx, k
r
y) and (ksx, k

s
y), must satisfy the

following triangular relation:

(kx, ky) = (krx, k
r
y) + (ksx, k

s
y). (3.13)

In other words, it is the interaction between the two wavenumbers, kr =
√

(krx)
2 + (kry)

2

and ks =
√

(ksx)
2 + (ksy)

2, that results in the change at the third wavenumber k =√
(kx)2 + (ky)2. For later reference, we useTkr , ks(k) to denote the contribution toT(k)

due to the quadratic interactions of the flow at two different wavenumbers kr and ks.
To understand the contributions from the different scales, it is convenient to partition
the kr , ks domain into different wavenumber regimes: kr , ks ∈ M, I, II, III, A. These
correspond to the regimes: M = {k: k = 0} (mean flow); I = {k: 0.6 6 k < 5.4}
(large scales); II = {k: 5.4 6 k < 10.2} (small resolved scales and large subgrid
scales); III = {k: 10.2 6 k < 15} (small scales); and A = {k: k > 0} (all turbulent
fluctuation wavenumbers). For each of these energy transfer terms, we further define
their directional components,Tkr , ks

j , j = x, y, z, which correspond to the contributions
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toTkr , ks due to the jth component of the advection term, −∂uiuj/∂xj (no summation
for j).

We first consider the interaction between the mean flow and the total turbulent
fluctuations,TM,A. This is plotted in figure 7 for the free-surface region (averaged over
−0.25 6 z 6 0) and the deep region (averaged over −1.625 6 z 6 −1.375). Here and
hereafter, T is normalized by the local turbulent kinetic energy q2(z, t)/2. Figure 7
shows clearly the energy extraction from the mean flow to turbulent fluctuations
and that it is the low wavenumbers (largest eddies) that receive most of the energy
directly. Figure 7 also shows that the turbulent production near the free surface is
much less than that in the deep region. This is consistent with Shen et al. (1999) who
considered the total production 〈−uw〉∂〈u〉/∂z in the physical space. This reduction
was explained by Shen et al. (1999) through two mechanisms: (i) the annihilation of w
due to the constraint on the vertical motion at the free surface; and (ii) the vanishing
of ∂〈u〉/∂z caused by the shear-free free-surface boundary condition.

Next we investigate the interaction among the total turbulent fluctuations, TA,A,
which is plotted in figure 8(a). The forward energy transfer (for the low wavenumbers)
is manifested in the bulk region, as expected. This energy transfer is, however,
very different near the free surface where it is predominately one of backscattering
(although at a smaller magnitude). This reverse energy transfer mechanism near
the free surface is consistent with the finding in figure 6 and was also observed in
free-surface jet flows (e.g. Mangiavacchi, Gundlapalli & Akhavan 1994).

The overall picture is clarified if we consider the contributions to TA,A from the
different wavenumber scales, specifically: TI,A, TII,A, TIII,A. These are plotted in
figures 8(b), 8(c), and 8(d), respectively. From these figures, we observe that, in the
bulk region, the role of each band is to remove the energy from the larger scales to the
smaller scales. This is in agreement with the previous studies on other types of flows
(see e.g. Domaradzki & Rogallo 1990 for isotropic homogeneous turbulence, and
Domaradzki et al. 1994 for wall-bounded turbulence). Near the free surface, band I
(large scales) feeds energy into the low wavenumbers, similar to the backscatter shown
in figure 8(a), while the intermediate and small scales, bands II and III, continue to
transfer energy forward. Nevertheless, the magnitudes of the forward energy transfer
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Figure 8. Inter-scale energy transfer: (a) among the turbulent fluctuations totalTA,A; and associated
with (b) band I (0.6 6 k < 5.4) TI,A, (c) band II (5.4 6 k < 10.2) TII,A, and (d) band III
(10.2 6 k < 15) TIII,A. ———, Deep region; – – – –, free surface.

by bands II and III near the free surface are much less than the corresponding values
in the bulk.

More insight into the inter-scale energy transfer can be obtained by considering
the directional components of Tj . It is found that for j = x and y, the difference
between T in the bulk and at the free surface is insignificant: in both cases, energy
is transferred from larger to smaller scales (results not plotted here). It is for the
vertical component Tz (figure 9) that fundamental differences obtain between the
bulk and free surface: the forward energy transfer in the bulk becomes negative and
is comparable in magnitude at the free surface. Clearly this reversal is related to the
vertical convective velocity term:

−∂uiw
∂z

= −w∂ui
∂z
− ui ∂w

∂z
, i = 1, 2, 3. (3.14)

The vertical velocity w is small near the free surface and hence the second term
−ui∂w/∂z dominates. Since ∂w/∂z = −(∂u/∂x + ∂v/∂y) measures the divergence
at the horizontal plane, we conjecture that the energy backscatter in free-surface
turbulence is probably related to the splat and antisplat motions near the surface.
This is confirmed in § 3.3.

In summary, it is found that the mechanism of inter-scale energy transfer near a
free surface is substantially different from that in the bulk flow. The typical energy
cascade from large to small scales does not obtain near the free surface. This energy
backscatter, which is found to be caused by vertical convection, plays a prominent
role in the structure of free-surface turbulence.
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3.3. Coherent vortical structures at the free surface

The reverse inter-scale energy transfer in free-surface turbulence is related to the
presence of coherent vortex structures at the surface. The correlation between the
turbulent structures and the forward/backward inter-scale energy transfer has received
some attention in recent years. Hartel et al. (1994) showed that the backscatter near
a solid wall is strongly enhanced by coherent motions such as bursting events.
Piomelli, Yu & Adrian (1996) investigated the dependence of the inter-scale energy
transfer on the large-scale turbulent structures in wall-bounded flows. These studies of
wall-bounded flows provide important physical insights for the development of SGS
models. For free-surface turbulence in an open-channel flow, Pan & Banerjee (1995)
found strong backscatter in the upwellings, while strong forward energy transfers are
at the outskirts of the surface-connecting vortices where the shear is high. The energy
transfers at the vortex core regions are found to be weak. These features are also
obtained in our present simulations (results not shown here).

From earlier studies (cf. Shen et al. 1999) it is shown that free-surface shear
turbulence is characterized by the presence of hairpin vortices which are inclined with
the mean flow with head portions near the free surface and the two legs extending
into the bulk region. As a hairpin vortex approaches the surface, the head portion
is dissipated quickly within a surface layer and the two legs connect to the surface,
resulting in a pair of persistent counter-rotating surface-connected vortices. (These
processes are studied in some detail by Shen et al. 1999.) In our SGS modelling,
we find that it is essential to capture the inter-dependence of near-surface vortex
dynamics and inter-scale energy transfer in order to obtain adequate prediction of
the surface signature.
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To analyse the coherent turbulent structures, we employ the method of conditional
averaging (see Antonia 1981 for a review of this method for turbulence studies).
Specifically, we use a variable-interval space-averaging (VISA) technique (Kim 1983;
Hartel et al. 1994; Piomelli et al. 1996), which is based on the variable-interval
time-averaging (VITA) method developed by Blackwelder & Kaplan (1976). We
summarize the VISA procedure used in the present study as follows. The event we
want to capture is the head portion of the hairpin vortex near the free surface, i.e.
large negative spanwise vorticity ωy . Its variable-interval space averaging is defined
as

ωy(x, y, z, t,W ) ≡ 1

4W 2

∫ x+W

x−W

∫ y+W

y−W
ωy(ξ, ζ, z, t)dξdζ, (3.15)

where W is the half-width of the averaging window, which has a value about 1
(macroscale) in this study. To identify strong ωy events, a localized variance is
introduced:

ωvar
y (x, y, z, t,W ) ≡ ω2

y(x, y, z, t)− ω2
y(x, y, z, t,W ). (3.16)

Strong hairpin head events are detected using the following criterion:

D(x, y, z, t) =

{
1 if ωvar

y > c(ωrms
y )2,

0 otherwise.
(3.17)

Here the detection function D(x, y, z, t) = 1 if the hairpin head exists; ωrms
y is the

root-mean-square variation of ωy at the horizontal plane; and c is the threshold level,
which has the value 15 in the present study. We use the data from t = 40 to 90
from 25 DNS realizations averaging over O(1000) events. The three-dimensional flow
field associated with each event is then ensemble averaged to yield the VISA field.
(Before the averaging, the coordinates are transformed horizontally so that all the
events are centred at (0, 0, zd).) In this study, we have investigated hairpin head events
at horizontal planes of difference depths zd ranging from zd = −0.25 to −0.0625.
Increasing zd corresponds to later phases of the vortex connection process (cf. Shen
et al. 1999). For conciseness, in this paper we only show the representive case with
zd = −0.125.

Figure 10 shows an example of the resulting VISA flow field. The averaged hairpin
head is centered at (0, 0,−0.125) in the plots. Figure 10(a) shows the isosurface of the
vorticity magnitude |ω|. The head portion and the two legs of the hairpin are seen
with the legs inclined with the mean shear flow (cf. figure 1).

One of the major findings of this study is shown in figure 10(b), where the region
with energy backscatter is plotted. Comparing figures 10(a) and 10(b), it is seen that
there is a distinct region of backwards energy transfer (positive τij s̄ij) downstream of
the hairpin structure. The remainder of this sub-section is devoted to elucidating this
feature.

Figure 11 plots vertical (x,z) sections at the centre (y = 0) of the VISA hairpin
vortex. Owing to the induction of the hairpin head (which has negative ωy component)
and the two hairpin legs, the fluid downstream is advected to the free surface (‘splats’),
while the fluid upstream moves away from the free surface (‘antisplats’). The contours
of the SGS dissipation in figure 11 show clearly the energy backscatter (positive τij s̄ij)
region located downstream of the hairpin vortex. The thickness of this region is about
0.1 and is comparable to the thickness of the surface layer identified in Shen et al.
(1999, 2000).

The surface characteristics of the VISA field are of immediate interest, and are
plotted in figure 12. The surface contours of the spanwise vorticity, ωy , (part a),
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Figure 11. Vertical centreplane (y = 0) sections of the VISA hairpin structure: (a) the contours of
ωy; (b) the contours of τij s̄ij with contour interval 0.0002. Dashed lines represent negative values.
The mean flow is in the positive x-direction.

which is induced by the primary vortex beneath, show that the surface vorticity is
positive in the centre region (the hairpin head has negative ωy) and negative at the
two sides. From the surface-normal vorticity ωz (part b), it is seen that as the hairpin
vortex approaches the surface, positive/negative ωz appears upstream on both sides
of the symmetry plane (y = 0). These eventually evolve into a pair of counter-rotating
surface-connected vortices.

Surface contours of SGS dissipation τij s̄ij are plotted in figure 12(c). The energy
backscatter in the downstream region is clearly seen. Figure 12(d) plots contours of
the Smagorinsky coefficient CS obtained by matching the model (3.9) point by point
with the DNS-resolved SGS stresses. As expected, CS < 0 in the region of energy
backscatter.

According to Shen et al. (1999), the inclination angle of the vorticity at the surface,

α ≡ tan−1
(√

ω2
x + ω2

y/|ωz|
)

, is a good indicator of the temporal phase or ‘age’ of

a surface-connecting hairpin vortex. During the connection, α is large (& 25◦), as
shown in figure 12(e). After connection, ωz becomes dominant while ωx and ωy are
dissipated and α becomes small (. 5◦ in the present case). The detailed results for
this latter condition are not shown here but were discussed extensively in Shen et
al. (1999). It was found that surface-connected vorticity is persistent and decays at a
slow rate (more comparable to a laminar condition). This is in agreement with Pan
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& Banerjee (1995) who observed that the energy cascade magnitude is small at the
cores of surface-connected vortices.

Finally, figure 12(f) plots the horizontal divergence ∂u/∂x + ∂v/∂y = −∂w/∂z
together with the horizontal velocity fluctuation vectors (u− 〈u〉, v− 〈v〉). These show
clearly the regions of splats and antisplats. The downstream splat region, when
compared with figures 12(c) and 12(d), is shown to correlate directly with the region
of energy backscatter.
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In summary, conditional averaging shows that energy backscatter at the free surface
occurs at the downstream splat region of coherent hairpin structures approaching the
surface. This region is also characterized by large vortex inclination angles (relative to
the vertical) and positive horizontal velocity divergence ∂u/∂x + ∂v/∂y. The physics
revealed herein is used directly in our later development of SGS stress models for
free-surface turbulence in § 4.

3.4. Anisotropy in the surface layer

In some sense, a necessary difference between isotropic turbulence and free-surface
turbulence is anisotropy of the latter due to the imposition of kinematic and dynamic
boundary conditions at the free surface (cf. e.g. Shen et al. 1999). Figure 13 plots the
vertical profiles of the velocity and vorticity components in the three wavenumber
bands I, II, and III. The anisotropy in the velocity is a direct consequence of the kine-
matic free-surface condition which renders w much smaller than u and v near the free
surface. The anisotropy in the velocity gradients is caused by the vanishing tangential-
stress free-surface boundary conditions which results in horizontal vorticity compo-
nents ωx and ωy much smaller than the vertical component ωz . Comparing the results
for the different wavenumber bands, it is significant that the free-surface anisotropy re-
mains qualitatively undiminished for different eddy wavenumbers. Thus, anisotropy is
an essential feature that must be accounted for by free-surface turbulence SGS models.

Figure 13 also reveals the vertical extents of the free-surface anisotropy regions as
eddy wavenumber increases. To examine this further, we compare the normalized (by
values in the bulk) vertical profiles for different wavenumber bands. Figure 14 plots
typical results for w and ωx. As a measure of the respective surface layer thickness, the
point at which maximum (negative) curvature occurs on each profile is also indicated.
For the velocity, the thickness generally decreases with increasing k as expected from
physical reasoning. For ωx (a similar result obtains for ωy), there is little variation of
the anistropy thickness with wavenumber, and the overall thickness is smaller than
those for the velocity components, consistent with the respective inner versus outer
(blockage) layer effects they manifest.

The double-layer structure near the free surface is elucidated by considering the
vertical variation of the (horizontally averaged) turbulence diffusivity. This is done in
Shen et al. (2000) where it is found that the surface layer is characterized by a rapid
reduction of the turbulence diffusivity. This behaviour is fitted well by a Guassian
profile and can be modelled by an analytical similarity solution for the mean flow.
Of special relevance here is the fact that the outer and inner layer structure of the
free-surface boundary layer can be quantified in terms of the mean flow profile. In
particular, the outer and inner thicknesses are given by the local minimum and then
the local maximum of the shear profile as the surface is approached (cf. figure 26).

We now examine the extent of anisotropy in the SGS stress. Figure 15 plots the
depth variation of the r.m.s. values of the (trace-free) SGS stress and the (grid-scale)
strain rate components. As expected, there is significant anisotropy near the free
surface: for both the SGS stress and strain rate, the ‘horizontal’ components ij = 11,
12, 22, 33 increase towards the free surface, while the ‘vertical’ components ij = 13,
23 decrease. Note that ij = 33 is also a ‘horizontal’ component because w and thus
τ33 ≡ ww − w̄ w̄ is small near the free surface, so that τ33 − τkk/3 contains mainly
contributions from τ11 and τ22. We notice, however, that the extents over which the
anisotropic variations occur are quite different for the stress versus the strain rate.
The reason is that the anisotropy in the SGS stress is a direct result of the kinematic
constraint on the vertical motion, while that in the strain is due to the dynamic
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Figure 13. Vertical profiles of the turbulence fluctuation of (i) velocity and (ii) vorticity x- (———),
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condition of vanishing tangential stresses. Consequently, the SGS stress varies within
a ‘blockage’ layer which is much thicker than the ‘inner’ layer over which the strain
rate varies (cf. Shen et al. 1999).

A useful way to measure the correlation between the SGS stress and strain rate
is to consider a priori tests of a standard eddy-viscosity SGS (Smagorinsky) model
(3.9). If we assume the Smagorinsky coefficient CS to be constant horizontally but a
function of depth, it can be determined a priori as in figure 6. The goodness of fit
of this model is measured by the correlation coefficient between the trace-free SGS
stress and the SGS model:

Cor(z, t) ≡ 〈(τij − δijτkk/3− 〈τij − δijτkk/3〉)(Mij − 〈Mij〉)〉
(τij − δijτkk/3− 〈τij − δijτkk/3〉)rms(Mij − 〈Mij〉)rms . (3.18)
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Figure 14. Normalized vertical profiles of the turbulence fluctuation: (a) vertical velocity w; and
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Figure 16. Correlation coefficient (3.18) between the trace-free SGS stress τij − δijτkk/3 and:
———, dynamic Smagorinsky model (DSM); – – – –, dynamic anisotropic selective model (DASM);
– · – · –, DSM combined with a scale-similarity model (DSM+B); −−−−, DASM combined with a
scale-similarity model (DASM+B). t = 60.

This is plotted in figure 16 (the model is labelled ‘DSM’). In the bulk flow, the
correlation coefficient is about 0.2. This is in agreement with previous studies on
other types of turbulent flows (see e.g. Clark et al. 1979; McMillan et al. 1980; Liu,
Meneveau & Katz 1994). The reason for the low correlation between the actual SGS
stress and the Smagorinsky model is that their principal axes are not aligned. Near a
free surface, the correlation drops even lower. Clearly, a dynamic Smagorinsky model
is not an effective model for free-surface turbulence.

Armed with these physical observations, we now proceed to the development of
effective SGS modelling and LES of free-surface turbulence.

4. Development of LES for free-surface turbulence
As pointed out in § 2, in addition to the need to model the SGS stress in the

momentum equations, the imposition of free-surface boundary conditions introduces
additional SGS quantities associated with the isotropic dynamic pressure pSGS ≡ τkk/3
and SGS flux τkbcu,v . The models we use for these free-surface SGS quantities are
discussed in § 2.2.

From the analysis of DNS data in § 3, we obtained physical insights into free-surface
turbulence which should be captured in LES: (i) As the free surface is approached, the
energy transfer from large scales to small scales decreases significantly. This reduction
is caused by the presence of energy backscatter associated with the vertical motions
near the free surface. (ii) The inverse energy transfer is strongly correlated with the
coherent (hairpin) vortex structures in the near-surface region which are characteristic
of free-surface shear flows. In particular, strong backscatter is found to occur in the
splat region associated with the connection of hairpin vortices to the free surface.
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(iii) The turbulence field near the free surface is highly anisotropic. This anisotropy
prevails as the length scales of the turbulence eddies decrease and is manifested
as qualitatively different behaviours in different components of the SGS stress. As
a result, the correlation between actual and modelled SGS stresses in traditional
eddy-viscosity-type SGS models is quite poor.

In the following, a number of new SGS stress models for free-surface turbulence
are introduced and compared with more standard approaches. The relative merits of
these models tested against the DNS dataset are then presented and discussed.

4.1. SGS stress models for free-surface turbulence

In general, the SGS stress (2.8) can be modelled with or without splitting it into
separate components, for example the Leonard stress, cross-stress and ‘true’ SGS
stress; or the modified definitions suggested by Germano (1986). In this work, we
adopt the approach where the SGS stress is treated as a whole (cf. Lesieur & Métais
1996). All the models we present satisfy Galilean invariance (cf. Speziale 1985).

The base model we use here is the plane-averaged dynamic Smagorinsky model
(DSM), which we use to compare to two new SGS models: a dynamic anisotropic
selective model (DASM), which captures the dependence of energy backscatter on
the coherent vortex structure and the anisotropy nature of free-surface turbulence;
and a dynamic free-surface function model (DFFM), which directly accounts for the
variation of the eddy viscosity in the surface layer.

4.1.1. Dynamic Smagorinsky model (DSM)

We consider the dynamic formulation of the Smagorinsky model (3.9) following
the procedure of Germano et al. (1991) with the modification of Lilly (1992). At the

coarse filter Ĝ level, the Smagorinsky model is written as

Tij − 1
3
δijTkk = −2CS

ˆ̄∆2| ˆ̄s|2 ˆ̄sij . (4.1)

The Germano identity states that

Lij − 1
3
δijLkk = Tij − τ̂ij − 1

3
δij(Tkk − τ̂kk) = −2CS

ˆ̄∆2| ˆ̄s|2 ˆ̄sij + (2CS
̂̄∆2|s̄|2s̄ij). (4.2)

Assuming that CS is constant over the horizontal plane and applying the test filter Ĝ
in the horizontal directions only, (4.2) reduces to

Lij − 1
3
δijLkk = CS (2∆̄2 |̂s̄|2s̄ij − 2 ˆ̄∆2| ˆ̄s|2 ˆ̄sij). (4.3)

The coefficient CS is chosen to best match the above equation on the horizontal plane
using a least-square approach (Lilly 1992):

CS (z, t) =
〈Lijmij〉
〈m2

ij〉 . (4.4)

Here mij = 2∆̄2 |̂s̄|2s̄ij − 2 ˆ̄∆2| ˆ̄s|2 ˆ̄sij and s̄kk = ˆ̄skk = 0 is used, which is based on continuity.

4.1.2. Dynamic anisotropic selective model (DASM )

The poor correlation between the Smagorinsky model and the SGS stress near the
free surface in figure 16 can be attributed to the use of a single coefficient CS (z, t) for
all the stress components in each entire horizontal plane. As pointed out earlier, the
tangential components exhibit behaviour different from the other components because
of the free-surface anisotropy, which may cause the principal axes of the model tensor
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to be far from those of the actual SGS stress. In addition, the increase in backscatter
near the free surface is also not accounted for by (3.9): when a single positive model
coefficient is used, the correlation in the backscatter region is necessarily negative,
which reduces the overall correlation.

For this highly anisotropic flow, it is useful to consider different model coefficients
in (3.9) for the different SGS stress components:

τij − 1
3
δijτkk = −2Cij∆̄

2|s̄|s̄ij , no summation for ij. (4.5)

Since the flow is also highly varying in space (see e.g. the horizontal variations in
figure 12), the (horizontal) spatial variation of Cij is of interest.

Guided by the results of § 3 (e.g. figure 15), we propose to model Cij in two separate
groups: the vertical coefficients ij = 13, (31), 23, (32); and horizontal coefficients
ij = 11, 12, (21), 22, 33. The expectation (this is confirmed by extensive direct a
priori tests) is that the horizontal coefficients will be positive in regions of forward
energy cascade and negative in regions with energy backscatter, while the vertical
coefficients will not be much affected by the energy forward/backward transfer. It is
then natural to propose an anisotropic SGS model which has different coefficients for
the horizontal and vertical components:

τij − 1
3
δijτkk = −2∆̄2|s̄|

 Cn
Hs̄11 Cn

Hs̄12 Cn
V s̄13

Cn
Hs̄21 Cn

Hs̄22 Cn
V s̄23

Cn
V s̄31 Cn

V s̄32 Cn
Hs̄33

 . (4.6)

As in DSM, the model coefficients are functions of depth and time, Cn
H (z, t), Cn

V (z, t),
but the subscripts H and V correspond to ‘horizontal’ and ‘vertical’, respectively.
In addition to the anisotropy, we also allow the model coefficients to have different
values in different regions of each horizontal plane using a selection based on the
(resolved) coherent vortical structure. This is indicated by the superscript n for regions
within which different physical processes occur. Equation (4.6) represents a new model
which we denote the dynamic anisotropic selective model (DASM). The different spatial
regions n in each horizontal plane are selected as follows:

(a) n = a, energy backscatter region. As shown in § 3.3, energy backscatter occurs at
the splat region of hairpin vortex connection, where vortex surface-inclination angle
α is large and horizontal divergence is positive. For our DASM implementation, we
define region ‘a’ as all points which satisfy α > 25◦ and ∂ū/∂x+∂v̄/∂y = −∂w̄/∂z > 0.
Based on earlier discussions, we expect Ca

H to be negative near the free surface.
(b) n = b, small inter-scale energy transfer region. As discussed in § 3.3, in the region

where coherent vorticity is connected to the free surface, the inter-scale energy transfer
is expected to be weak and SGS dissipation is small or can be neglected. In our DASM,
this region is defined by α < 5◦ and |ω̄z| > 2ω̄rms

z , wherein we set Cb
H = Cb

H = 0.
(c) n = c, remaining region (without strong coherent vortical interactions). This is

the ‘typical’ region and is expected to be dominated by forward energy transfer.
We point out that the ‘selective’ idea for the SGS modelling is not new. David

(1993) developed a selective structure-function model based on the angle between
the vorticity at a grid point and the vorticity averaged over the neighbouring points.
When the angle is less than 20◦, which means that the flow is not sufficiently three-
dimensional, the SGS model is turned off to allow molecular dissipation only. The
model is turn on only when the angle exceeds 20◦. This selective structure-function
model has been applied successfully to stratified flow over a backward-facing step (cf.
Lesieur & Métais 1996).
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We also remark that the DASM explicitly captures the anisotropic nature of
free-surface turbulence; as a result, (4.6) satisfies rotational invariance only for the
(vertical) z-axis. For large free-surface deformation (not considered here), (4.6) must
at least be modified to refer to the local surface-normal/surface-parallel coordinates.

An indication of the efficacy of DASM over DSM is in a priori tests of the model
against DNS data. Figure 16 also plots the correlation coefficient (3.18) between
DASM and the SGS stress from DNS. Compared to DSM, DASM obtains better
correlation, especially near the free surface. This suggests that the anisotropic and
selective nature of DASM is more able to capture the processes near the free surface.
This is confirmed in figure 17 which plots the vertical variations of the DASM model
coefficients obtained from a priori test. In region a, it is seen that Ca

H < 0 as the
free surface is approached, indicating energy backscatter. On the other hand, the
difference between Ca

V and Cc
V is insignificant and both remain positive throughout

the depth (but diminish towards the free surface).
Finally, we discuss the dynamic procedure for obtaining the DASM coefficients,

Cn
H (z, t), Cn

V (z, t), n = a, c, in LES. At the coarse filter level, the SGS model is written
as

Tij − 1
3
δijTkk = −2 ˆ̄∆2| ˆ̄s|

 Cn
H

ˆ̄s11 Cn
H

ˆ̄s12 Cn
V

ˆ̄s13

Cn
H

ˆ̄s21 Cn
H

ˆ̄s22 Cn
V

ˆ̄s23

Cn
V

ˆ̄s31 Cn
V

ˆ̄s32 Cn
H

ˆ̄s33

 . (4.7)

The Germano identity then gives

Lij − 1
3
δijLkk =

 Cn
Hm11 Cn

Hm12 Cn
Vm13

Cn
Hm21 Cn

Hm22 Cn
Vm23

Cn
Vm31 Cn

Vm32 Cn
Hm33

 , (4.8)
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∆̄ 0.119 0.188 0.247 0.299 0.347 0.392
r 0.562 0.567 0.580 0.595 0.614 0.636

Table 1. Dependence of the DFFM model coefficient r on the LES filter width ∆̄.

where mij is as defined before. Finally, the DASM coefficients are solved by minimizing∑
n=a,c

∑
ij=11,12,21,22,33

(Lij − δijLkk/3− Cn
Hmij)

2 +
∑
n=a,c

∑
ij=13,23,31,32

(Lij − Cn
Vmij)

2

on each horizontal plane. Note that the above procedure in effect neglects the
variations of the model coefficients across boundaries between different regions but
the net effect is found to be insignificant.

4.1.3. Dynamic free-surface function model (DFFM )

The results in § 3.2 (e.g. figure 6) show that, as a result of (reverse) energy cascade,
the eddy viscosity exhibits a characteristic decrease in the free-surface boundary
layer. It is, therefore, desirable if this variation and the structure of the free-surface
boundary layer can be represented explictly in an SGS model. As discussed in § 3.4,
the free-surface layer structure can be quantitatively defined in terms of the mean
flow profile. Shen et al. (2000) found a similarity solution for the latter which is
associated with a Gaussian profile for the turbulence diffusivity. These compared
remarkably well with DNS. It is shown further in Shen et al. (2000) that, similar to
the turbulence diffusivity, the Smagorinsky coefficient CS (z, t) near the free surface
can also be described well by a Gaussian profile:

CS (z, t) = CSa − (CSa − CS0) exp [−z2/(ra)2]. (4.9)

Here CSa is the value of the Smagorinsky coefficient in the bulk flow, CS0 its value
at the free surface, and a is the thickness of the outer free-surface boundary layer
defined to be the depth of the minimum of the mean flow profile. The coefficient r
(found to be close to 0.6 in Shen et al. 2000) is a length-scale ratio to be specified.

We remark that (4.9) from Shen et al. (2000) is a result of the vanishing tangential
stress boundary condition at the free surface. For problems where the tangential stress
may be non-zero at the free surface, for example when wind stress or surfactants are
present, Shen et al. (2000) and the Gaussian profile (4.9) need to be extended/modified.

We develop in this paper a dynamic free-surface function model (DFFM) based on
(4.9) wherein the model coefficients CSa, CS0 and a are determined dynamically from
the resolved flow. The coefficient r is not directly available from the resolved flow
and may, in general, depend on the LES filter width ∆̄. Table 1 shows the variation
of r as a function of ∆̄. The variation of r with ∆̄ is relatively small and justifies the
use of a constant value of r in (4.9) which we set to be r = 0.6 in our DFFM.

The dynamic scheme for the DFFM coefficients CSa and CS0 is derived from the

model SGS equations for two filter levels G and Ĝ:

τij − 1
3
δijτkk = −2{CSa − (CSa − CS0) exp [−z2/(ra)2]}∆̄2|s̄|2s̄ij , (4.10)

and

Tij − 1
3
δijTkk = −2{CSa − (CSa − CS0) exp[−z2/(ra)2]} ˆ̄∆2| ˆ̄s|2 ˆ̄sij . (4.11)
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Using the Germano identity, we obtain

Lij − 1
3
δijLkk = {CSa − (CSa − CS0) exp [−z2/(ra)2]}mij , (4.12)

where mij is defined as before. Instead of averaging over each horizontal plane, the
coefficients CSa and CS0 are determined by best matching (4.12) over the entire fluid
volume. Least-square minimization then gives∫ 0

−D
W(z)〈(Lij − 1

3
δijLkk − CSa{1− exp [−z2/(ra)2]}mij − CS0 exp [−z2/(ra)2]mij)

2〉dz.
In the above, W(z) is a weighting function which we choose to be W(z) =
exp[−z2/(2ra)2] to place more weight on the near-free-surface region.

Finally, the outer layer thickness a(t) is determined from the resolved mean shear
profile by the location where the (local) minimum (first) occurs in the near-surface
region.

4.2. Evaluation of SGS models for free-surface flux and dynamic pressure

Before we consider the performance of the SGS stress models in § 4.1 in (a posteriori)
LES, we first evaluate the models for the SGS free-surface flux and dynamic pressure
discussed in § 2.2.

In this study, the benchmark data are obtained from DNS of the free-surface shear
flow on a fine 1282(horizontally)× 192 (vertically) grid with timestep 0.005. To obtain
smooth statistics, a set of 25 DNS datasets (with different initial seeds) is obtained.
For LES we use a coarse 322 × 96 grid with timestep 0.02. We start the LES with
the filtered DNS field at t = 60, and run the simulation for 10 time units, which is
sufficient for the free-surface turbulence features (e.g. the surface-connecting vortices)
to evolve significantly. A total of 25 LES runs corresponding to the DNS are also
performed. The LES results are then compared with the filtered DNS data at t = 70.

The grid filter G is introduced in § 3. The test filter Ĝ is similar to G and uses
Gaussian filters in the (periodic) horizontal directions but no filtering in the vertical

direction is now applied. The filter width for Ĝ is chosen to satisfy ˆ̄∆x = 2∆̄x and
ˆ̄∆y = 2∆̄y . The overall filter width at the coarse level, Ĝ, is defined as

ˆ̄∆ ≡ ( ˆ̄∆x
ˆ̄∆y∆̄z)

1/3 = 0.4749. (4.13)

Figure 18 shows the a priori performances of the scale-similar SGS model (2.31)
for the free-surface flux, and the Yoshizawa SGS model (2.20) for the free-surface
dynamic pressure pSGS in (2.19). The overall performance in terms of the correlation

Cor〈τ,M〉 ≡ 〈(τ− 〈τ〉)(M − 〈M〉)〉
(τ− 〈τ〉)rms(M − 〈M〉)rms . (4.14)

is excellent (∼ 0.9) for the SGS flux, and acceptable (∼ 0.7) for the free-surface
dynamic pressure. (Note that the mean value is subtracted from (4.14). If the mean
value is not subtracted, the correlation coefficient for the pSGS is close to 0.8.)

The efficacy of the modelling of the SGS free-surface terms τkbcu , τkbcv and pSGS is
demonstrated in a posteriori tests. Figure 19 compares the free-surface elevation and
horizontal surface vorticity ωs ≡ (ω2

x + ω2
y)

1/2|z=0 between the LES and DNS results.
For LES without SGS, the results depart from the DNS values and grow in time in
a non-physical manner. Comparing the LES results (with DSM for the SGS stress)
with and without SGS models for τkbcu,v and pSGS , the improvement with the latter
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Figure 18. Correlation coefficients from a priori tests of SGS models for free-surface dynamic
pressure pSGS (———), and free-surface flux terms: τkbcu (– – – –) and τkbcv (– · – · –).
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Figure 19. Time evolutions of (a) the free-surface elevation h̄rms/Fr2, and (b) the horizontal
surface-vorticity magnitude ω̄rms

s /Fr2 obtained using: ◦, DNS; · · · · · ·, simulation on coarse grid
without any model; – – – –, DSM without SGS models for free-surface flux and dynamic pressure;
and with SGS models for free-surface flux and dynamic pressure: ———, DSM; – · – · –, DFFM;
and –··–··–, DASM. The curve −−−− represents DSM with the scale-similarity model (4.15) instead
of the Yoshizawa expression (2.20) for pSGS .

is quite appreciable. Of the two, our results (not shown in figure 19) show that the
modelling of pSGS accounts for about 70% of the total observed improvement.

We remark that in addition to the Yoshizawa expression (2.20), we have also tested
a dynamic scale-similarity model for the SGS contribution to the dynamic pressure:

pSGS ≡ ukuk − ūkūk
3

= Cp,B
ūkūk − ¯̄uk ¯̄uk

3
. (4.15)

Although this model obtains a high correlation coefficient (∼ 0.9) in the a priori test,
our a posteriori test shows that it does not provide surface statistics as satisfying as
the Yoshizawa model (figure 19).

Figure 20 plots the dynamic model coefficient values for Ckbc in (2.31) and Cp in



Large-eddy simulation of free-surface turbulence 103

0.0060

0.0055

0.0050

0.0045
60 62 64

t
66 68 70

Cp

Cp

Ckbc

1.180

1.175

1.170

1.165

1.160

Ckbc

Figure 20. Time variations of the coefficients of the SGS models for the free-surface pressure pSGS ,
Cp (———); and free-surface flux τkbcu,v , Ckbc (– – – –).

(2.20) obtained in the DSM results of figure 19. The coefficient Ckbc for the scale-
similarity model has the value around 1.17 which is close to the coefficient value
of the scale-similarity model for the SGS stress (see figure 34). The coefficient Cp
in the Yoshizawa expression varies from 0.0056 to 0.0047, which is larger than the
Smagorinsky coefficient near the free surface (cf. figure 21).

For non-vanishing Froude numbers, it is clear that the modelling of the free-
surface SGS terms pSGS and τkbcu,v is essential. In all subsequent LES results, the SGS
models for these terms (2.20) and (2.31) are always used. We note that the need for
SGS modelling in the kinematic boundary condition was also pointed out (but not
implemented) by Hodges & Street (1999). The modelling of the SGS contribution to
the dynamic pressure at the free surface appears to be new in the present context.

4.3. Evaluation of SGS stress models for free-surface turbulence

The SGS stress models introduced in § 4.1, DSM, DFFM and DASM, are tested
in (a posteriori) LES simulations against DNS results. We examine in order: the
variation of the model coefficients, predictions of turbulence intensity, mean flow and
free-surface vortical statistics.

4.3.1. Model coefficients

In § 3, we observed that the magnitude of the energy cascade from the resolved
scales to the subgrid scales decreases significantly as the free surface is approached.
Consequently, the Smagorinsky coefficient CS should also decrease towards the surface
(figure 6). Figure 21 compares the model coefficients of DSM and DFFM against
DNS-fitted values. Both models capture the decreasing trend of CS towards the
surface, but when a more physically based form of the profile is used in DFFM, the
comparison is appreciably improved in both the vertical extent and quantitative value.

Turning to DASM, the dynamic scheme provides, at each time, separate profiles for
Cn
H , Cn

V for each region n = a, c (we set Cb
H,V ≡ 0). The results are plotted in figure 22.

Comparing these to DNS-fitted curves in figure 17, it is seen that the dynamic and
DNS (a priori) values compare almost perfectly. The depths over which CH and CV
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Figure 21. Profile of the model coefficient CS from: ◦, DNS; ———, DSM; and – · – · –, DFFM.
The profiles are averaged from t = 60 to t = 70.
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Figure 22. Profiles of the model coefficient in DASM: ———, Ca
H ; – – – –, Ca

V ; – · – · –, Cc
H ; and

–··–··–, Cc
V . The profiles are averaged from t = 60 to t = 70.

vary are different: Cn
V are very close for n = a, c, while Ca

H and Cb
H differ qualitatively

near the free surface.

4.3.2. Turbulence intensity

Figure 23 compares the DNS and LES predictions of the turbulent kinetic energy
of grid-scale motions, q̄2/2 ≡ 〈(ūi − 〈ūi〉)2〉/2. In the absence of any SGS model, q̄2 is
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Figure 23. Grid-scale turbulent kinetic energy q̄2/2 obtained from: ◦, DNS; · · · · · ·, simulation
on coarse grid without any model; and LES using: – – – –, CSM; ———, DSM; – · – · –, DFFM;
–··–··–, DASM. t = 70.

over-predicted at all depths as expected. In addition to DSM, DASM and DFFM, we
plot for comparison the results using a constant Smagorinsky model (CSM) where
a single constant value of CS , set equal to the time-averaged bulk value obtained
in DSM, is used for the LES. CSM, which does not capture the decrease in eddy
viscosity at the surface, results in a q̄2 which is over-dissipated there. Indeed the error
in CSM at the surface is comparable in magnitude (but with opposite sign) to that
when no SGS model is used.

When vertical variation in the model coefficient is allowed, DSM obtains a rea-
sonable kinetic energy profile, although since DSM slightly under-predicts CS at the
surface (figure 21), the corresponding prediction of q̄2 there is somewhat high. The
new SGS models, DFFM and DASM, capture the variation of the model coefficients
over the surface layer more precisely and obtain more accurate q̄2 predictions near
the free surface. Of the two, DFFM, which captures more physically the near-surface
turbulence diffusion mechanism (Shen et al. 2000), delivers a slightly better overall q̄2

prediction.
Figure 24 presents similar results for the components of q̄2 which reveals the

anisotropy of the flow. Without the SGS model, all components are substantially
over-predicted. CSM under-predicts all the components but especially the horizontal
ones relative to the other dynamic models. DSM is able to capture the anisotropy
although the horizontal fluctuations are higher than the benchmark data because of
the underestimation of CS . With DFFM and DASM, improvements over DSM can
be seen.

4.3.3. Mean flow

We compare the LES predicted mean velocity profiles in figure 25. Although there
is improvement over the no SGS model case, CSM, DSM, DFFM and DASM are all
not satisfactory relative to their predictions of the kinetic energy. The reason is that,



106 L. Shen and D. K. P. Yue

0

–0.2

–0.4

–0.6

–0.8

–1.0
0 0.02 0.04

z

0.06 0.08 0.10

(ui– 〈ui〉)rms

(u– 〈u〉)rms(v– 〈v〉)rms

(w– 〈w〉)rms

Figure 24. Profiles of the grid-scale velocity fluctuation components (ūi−〈ūi〉)rms, i = 1, 2, 3, obtained
from: ◦, DNS; · · · · · ·, no SGS model; – – – –, CSM; ———, DSM; – · – · –, DFFM; –··–··–, DASM.
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Figure 25. The mean velocity profile 〈ū〉 at t = 70:◦, DNS; · · · · · ·, no SGS model; – – – –, CSM;
———, DSM; – · – · –, DFFM; –··–··–, DASM; •, the initial LES profile from DNS at t = 60.

while eddy-viscosity models obtain the correct overall SGS dissipation, the correlation
between the predicted and actual SGS stress itself is poor (cf. figure 16). As will be
shown in § 4.4, a combination of such models with a scale-similarity (Bardina-type)
model improves the mean velocity predictions significantly.

The most significant gain in using a surface-function-type model like DFFM is
in the prediction of the mean shear profile 〈ūz〉(z) (figure 26). The mean shear
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Figure 26. Mean shear profile ∂〈ū〉/∂z obtained from: ◦, DNS; · · · · · ·, no SGS model; – – – –,
CSM; ———, DSM; – · – · –, DFFM; –··–··–, DASM. t = 70.

profile quantitatively defines the surface layer structure in that, as the free surface is
approached, its magnitude initially increases over the outer boundary layer, reaches
a maximum and then drops to zero inside a much thinner inner layer (cf. Shen et
al. 2000). Figure 26 shows that CSM has a large error comparable to the no-model
case, and in particlar predicts a much thicker surface layer. DSM and DASM, which
obtain the decreasing trend in the eddy viscosity, capture the surface layer reasonably
well. Since the physical functional behaviour of the surface layer is represented in
DFFM, it predicts 〈ūz〉(z) with remarkable accuracy.

4.3.4. Free-surface vortical statistics

LES predictions of the free-surface roughness h̄rms and horizontal surface vorticity
ω̄rms
s are shown in figure 19. As pointed out there, proper SGS modelling of free-

surface flux and dynamic pressure is essential. With these models, DSM, DASM and
DFFM all perform adequately for such averaged statistics.

The observable turbulence features on the surface are of immediate importance to
applications. These features are dominated by near-surface vortical mechanisms such
as surface connection which result in persistent and prominent surface signatures.
Because of the uncertainty in the subgrid-scale motions (cf. Lesieur & Métais 1996),
it is inappropriate to compare the evolution of a specific vortical structure in the
LES. We resort instead to statistical measures of the structure of the coherent surface
vorticity.

Figure 27 plots the time evolution of the area percentage of coherent surface-
connected vortices, Ab, which we define as the percent of surface area satisfying
|ω̄z| > 2ω̄rms

z ∪ α < 5◦. Note that this is the same as region n = b of DASM. Because
of the persistence of such vorticity, Ab generally increases with time, as shown by
the DNS data. DSM, which does not account for either energy backscatter during
the vortex connection or reduced dissipation of surface-connected vortices, tends to
over-dissipate the surface vortices and hence under-predicts Ab. Since DFFM also
uses a single model coefficient in the horizontal plane, the improvement of DFFM



108 L. Shen and D. K. P. Yue

0.12

0.11

0.10

0.09

0.08

0.07
60 62

A
re

a 
pe

rc
en

ta
ge

64 68
t

66 70

Figure 27. Time evolution of the area percentage of coherent surface-connected vortices Ab for:◦, DNS; · · · · · ·, no SGS model; ———, DSM; – · – · –, DFFM; –··–··–, DASM.
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Figure 28. Distributions of (a) A(α); and (b) ω̄2
z(α) as functions of the vorticity surface-inclination

angle α obtained with: ◦, DNS; · · · · · ·, no SGS model; ———, DSM; – · – · –, DFFM; –··–··–,
DASM.

over DSM is small. On the other hand, since DASM uses a selective procedure
based on the resolved vorticity structure information, it obtains a significantly better
prediction for Ab.

As discussed in § 3.3, the surface-inclination angle α is an important measure of the
evolution of surface-connecting vortices. To further elucidate the efficacy of the LES
schemes for predicting surface signatures, we examine the distribution of percentage
surface area A and surface enstrophy ω̄2

z as a function of the grid-scale inclination
angle α. These are plotted in figure 28. The dominance of surface-connected vorticity
(low α) is evident. Compared to DNS data, DSM and DFFM both tend to under-
predict the low-α values as a result of over-dissipation of connection events (with a
single CS in the horizontal plane). DASM continues to perform well here although the
peaks in A(α) and ω̄2

z(α) are under-predicted since the number of selection regions n
used is still relatively small.

The superiority of DASM for surface signatures is further seen in the conditionally
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Figure 29. Contours of VISA SGS dissipation rate τij s̄ij around hairpin vortices, with the head
portion located at (0, 0,−0.0625). Results obtained with: (a) DASM (contour interval 0.0002); and
(b) DSM (contour interval 0.00002). Dashed lines represent negative values. The thick line is the
contour ωy = −0.5, which marks the location of the hairpin head.

averaged flow field around LES-resolved coherent hairpin vortices. Figure 29 plots
the VISA SGS dissipation rate around connecting hairpin vortices. Because of the
negative values of Ca

H (figure 22), DASM captures energy backscatter at the splat
region of the hairpin vortex. This is in agreement with the a priori results in § 3.3.
In comparison, DSM, which uses a single model coefficient in the plane, does not
capture the inverse energy transfer. Thus, although the plane-averaged value is correct
in DSM, the local SGS dissipation rate around this event is off in both sign and
magnitude.

4.4. SGS models tested at higher Reynolds and Froude numbers

The proceeding evaluations of SGS models are tested against our DNS dataset for
a free-surface turbulent shear flow at fixed (and relatively low) Reynolds number
(Re = 1400) and Froude number (Fr = 0.7). To further validate the new SGS models,
we apply our models to a flow with higher Reynolds (Re = 3000) and Froude (Fr =
1.4) numbers. The benchmark data are obtained from direct numerical simulations
at a very fine mesh with 256 × 256 × 384 grids (the DNS of the preceding lower
Reynolds and Froude number case uses a 128× 128× 192 grid). For the LES, we use
the same coarse 32× 32× 96 grid.

Figure 30(a) compares the turbulent kinetic energy profiles. For this higher Reynolds
and Froude number case, the improvement of the new DFFM and DASM over the
existing DSM is much better than that obtained in figure 23. This is also true for
the mean shear profiles shown in figure 30(b). At these higher Reynolds and Froude
numbers, the performance of the DSM is even worse (figure 30a, b) than before.
In this case, the DFFM is found to capture accurately the variation of turbulence
statistics near the free surface. The DASM results, although not as good as those of
the DFFM, are still superior to the DSM.

Figure 31 compares the statistics of the free-surface coherent structures. Consistent
with the preceeding results (figures 27 and 28) and more clearly so, the DASM is
found to capture the surface coherent signature statistics very accurately. The DFFM
also performs well, while the DSM is not satisfactory for this higher Reynolds and
Froude number case.

In summary, while the DFFM and DASM are established using DNS results at
a lower Reynolds/Froude number, their performance for a higher Reynolds/Froude
number case remains satisfactory. On the other hand, the DSM, which was inferior to
the DFFM and DASM, performs even more poorly here. This is a further validation
of the new DFFM and DASM. The improved relative performance of the new models
is mainly due to the fact that for the higher Reynolds number, the magnitude of the
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Figure 31. (a) Time evolution of the area percentage of coherent surface-connected vortices Ab,
and (b) distributions of ω̄2

z(α) as functions of the vorticity surface-inclination angle α. ◦, DNS;
· · · · · ·, no SGS model; ———, DSM; – · – · –, DFFM; –··–··–, DASM. Re = 3000 and Fr = 1.4.

viscous terms becomes smaller, and proper SGS modelling becomes more important.
It would be interesting to see how the DFFM and DASM would perform at even
higher Reynolds numbers. Unfortunately, we are already near the limit of available
computational capacity. For substantially higher Re, experimental benchmark data
would be invaluable.

4.5. Discussion

In this study, we have developed two new SGS stress models, DFFM and DASM,
for free-surface turbulent flows. Table 2 summarizes the performance of the new
models relative to the existing CSM and DSM. Also given in table 2 are the relative
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CSM DSM DFFM DASM

Related physics of multi-level surface- anisotropy and
free-surface turbulence layer structure energy backscatter

Model coefficient C C(z) CSa and Cs0 Cn
H (z) and Cn

V (z)
Performance for
turbulence intensity poor average excellent good

Performance for
mean shear poor average excellent good

Performance for
surface signatures average good excellent

CPU time per
timestep (seconds) 1.28 2.12 2.79 2.75

Table 2. Key features of the SGS stress models CSM, DSM, DFFM and DASM. CPU time is
measured for runs with a 32× 32× 96 grid on DEC AlphaStation 500/500.

computational costs. Overall, the new DFFM and DASM are superior to the existing
models for free-surface turbulence.

For free-surface turbulence, the SGS stress model results show that it is important
for eddy-viscosity models to capture the spatial variations of model coefficients both
vertically and horizontally: vertically because of the decrease in eddy viscosity over
the surface layer due to energy backscatter; and horizontally because of its disparate
behaviour associated with large-scale vortical events.

Dynamic procedures in the vertical direction in DSM and DASM have a sub-
stantial advantage over CSM in obtaining the vertical variations, but a model that
incorporates known physical structure(s) such as DFFM captures the surface layer
with remarkable accuracy. When model coefficients in the horizontal plane are al-
lowed to take on different values in a selective scheme, as in DASM (based on
coherent vorticity dynamics and reflected differently in different directional compo-
nents), the prediction of the statistics of coherent events is greatly improved. One
may suggest that a point-by-point dynamic scheme would do even better. However,
such procedures, without some ad hoc averaging, are prone to instability (when the
model coefficient varies excessively) (cf. Germano et al. 1991). Advanced localization
formulations (e.g. Ghosal et al. 1995) either constrain the occurrence of negative eddy
viscosity, which does not allow energy backscatter, or introduce additional transport
equations, which substantially increase the degree of complexity. Additional research
in these areas is needed.

While eddy-viscosity models do an excellent job in modelling the total dissipation,
they can be inadequate in certain aspects, for example in predicting the mean profile
here. In this case, the correlation between the modelled and actual SGS stress is
poor, because their principal axes are not generally aligned. As the free surface
is approached, the correlation becomes even worse. To overcome this drawback, a
powerful idea is to combine the eddy-viscosity model with a scale-similarity model
(cf. Bardina et al. 1983; and e.g. Zang, Street & Koseff 1993; Salvetti et al. 1997).
This is pursued in the next section.

4.6. Combination of eddy-viscosity and scale-similarity models

Each of the SGS models in § 4.1 can be used in combination with a dynamic scale-
similarity model. In this case, the DSM, DFFM and DASM approaches become
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respectively:

τij − 1
3
δijτkk = −2CS∆̄

2|s̄|2s̄ij + CB(Lmij − 1
3
δijL

m
kk), (4.16)

τij− 1
3
δijτkk = −2{CSa− (CSa−CS0) exp[−z2/(ra)2]}∆̄2|s̄|2s̄ij +CB(Lmij− 1

3
δijL

m
kk), (4.17)

and

τij − 1
3
δijτkk = −2∆̄2|s̄|

 Cn
Hs̄11 Cn

Hs̄12 Cn
V s̄13

Cn
Hs̄21 Cn

Hs̄22 Cn
V s̄23

Cn
V s̄31 Cn

V s̄32 Cn
Hs̄33

+ CB(Lmij − 1
3
δijL

m
kk). (4.18)

These we denote by DSM+B, DFFM+B and DASM+B respectively. In the above,
Lmij ≡ ūiūj − ¯̄ui ¯̄uj , and CB is the coefficient of the scale-similarity model to be deter-
mined dynamically. Note that the combined model DSM+B (4.16) is identical to the
dynamic two-parameter model (DTM) in Salvetti & Banerjee (1995) and Salvetti et
al. (1997).

To determine the model coefficients, a similar dynamic procedure as before is
applied. By using filters at two different levels and employing the Germano identity,
we obtain respectively

Lij − 1
3
δijLkk = CSmij + CBHij , (4.19)

Lij − 1
3
δijLkk = {CSa − (CSa − CS0) exp[−z2/(ra)2]}mij + CBHij , (4.20)

and

Lij − 1
3
δijLkk =

 Cn
Hm11 Cn

Hm12 Cn
Vm13

Cn
Hm21 Cn

Hm22 Cn
Vm23

Cn
Vm31 Cn

Vm32 Cn
Hm33

+ CBHij . (4.21)

Here Lij and mij have the same definitions as before, while Hij ≡ ̂̄̄ui ¯̄uj − ˆ̄̄ui
ˆ̄̄uj . Finally,

the coefficients are solved by least-squares matching of (4.19), (4.20) and (4.21)
respectively. The correlation coefficients between the actual SGS stress and those
predicted by DSM+B and DASM+B have been plotted in figure 16. As expected
based on previous studies, the correlation is improved significantly at all depths when
the scale-similarity model is added. In particular, the predictions of the combined
models show no degradation in the surface layer in contrast to the Smagorinsky
model alone.

The three combined models, DSM+B, DFFM+B and DASM+B, have been imple-
mented and studied extensively in a posteriori LES tests. Overall, we obtain noticeable
but not substantial improvements in the results for turbulent kinetic energy and free-
surface statistics in § 4.2 and § 4.3. The most marked improvement of the combined
models is in the prediction of the mean flow profile, which we focus on. Figure 32
compares the performance of the three SGS schemes with and without the scale-
similarity model. Relative to the results without SGS models, the improvement of the
combined models over the eddy-viscosity models alone is quite substantial.

Finally, we plot the dynamic model coefficients for DSM+B, DFFM+B and
DASM+B. Figure 33 shows that the coefficients of the eddy-viscosity portion of the
models preserve the same qualitative trends as those in § 4.3. The magnitudes of the
coefficients of the combined models are, however, reduced significantly. This can be
explained by the fact that less burden is put on the eddy-viscosity portion of the models
to capture the SGS stress, a feature in favour of numerical stability (Zang et al. 1993;
Salvetti et al. 1997). Figure 34 plots the profiles of CB for DSM+B and DASM+B.
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The variations of CB within the surface layer is small and may justify the use of
a single value of CB for all the depths. This affords a simplification for DFFM+B
where all the model coefficients are determined by least-squares minimization over
the whole volume.
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5. Conclusions
In this study we investigate the large-eddy simulation of free-surface turbulent

flows. The canonical problem we study is a turbulent shear flow beneath a free
surface at small finite Froude numbers. The benchmark data are obtained from DNS
on a fine grid. We first investigate the physics of the flow using an ensemble of DNS
data which show the following: (i) The energy cascade from grid scales to subgrid
scales decreases significantly at the free surface. (ii) The inter-scale energy transfer
is strongly correlated with the coherent free-surface vortical structures; in particular,
energy backscatter occurs at the splat region during the connection of a hairpin
vortex to the free surface. (iii) The SGS stress components are highly anisotropic. At
the splat region, only the horizontal components of the SGS stress react to the energy
backscatter.

Based on this understanding, we develop LES with specialized SGS models for
free-surface turbulence. These include SGS models for free-surface fluxes which come
from the kinematic free-surface boundary condition, and for a dynamic SGS pressure
which results from the imposition of a boundary condition on the total pressure at
the free surface. These are obtained in the present context for the first time. For the
SGS stress, we employ an existing dynamic Smagorinsky model (DSM), and develop
two new models: a dynamic free-surface function model (DFFM) which captures the
expected depth variation in the eddy viscosity (based on the similarity solution of Shen
et al. 2000); and a dynamic anisotropic selective model (DASM), which recognizes
the anisotropy of the flow field and the different energy cascade mechanisms which
are coupled with the coherent surface vorticity dynamics.

Our numerical tests show that modelling of the free-surface SGS fluxes and dynamic
pressure is important for the LES, especially in predicting the surface roughness.
Compared with DSM, DFFM captures much better the structure of the free-surface
boundary layer. On the other hand, DASM is superior in obtaining the statistics
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associated with free-surface signatures. The only shortcoming of these eddy-viscosity
models is found in the prediction of the mean flow profile. This is overcome by the
addition of a scale-similarity SGS model.

This research was financially supported by the Office of Naval Research under the
program management of Dr E. P. Rood. Most of the computations were performed at
the Aeronautical System Center on an IBM-SP3 as part of a DoD Challenge Project
under the DoD HPC Modernization Program.
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